2020
DOI: 10.24132/jbt.2020.10.2.64_72
|View full text |Cite
|
Sign up to set email alerts
|

Evaluating banking crisis predictions in EU and V4 countries .

Abstract: Relying on a recently published database of financial crises, this paper assesses an early warning model for predicting banking sector distress. The exercise employs discrete choice models and a signaling approach to evaluate the performance of an existing model based on credit-to-GDP change and real house price growth in regard to predominantly post-crisis data for EU and Visegrad Group countries. As such, unbalanced panel data for 27 EU countries, spanning with annual frequency at longest the period of 2003-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 1 publication
0
2
0
Order By: Relevance
“…probit (Berg & Pattillo, 1999;Frankel & Rose, 1996;Mulder et al, 2016), logit (Arregui et al, 2013;Davis et al, 2016;Davis & Karim, 2008;Domonkos et al, 2017a;Ostrihon, 2020;Valinskyt ̇e & Rupeika, 2015), or multinomial logit (Caggiano et al, 2016;Ciarlone & Trebeschi, 2005) models with random effects. Given our objective, we opt for a simple bivariate pooled logit model with random effects, as in Boyd et al (2009).…”
Section: T a B L E 3 Confusion Matrixmentioning
confidence: 99%
See 1 more Smart Citation
“…probit (Berg & Pattillo, 1999;Frankel & Rose, 1996;Mulder et al, 2016), logit (Arregui et al, 2013;Davis et al, 2016;Davis & Karim, 2008;Domonkos et al, 2017a;Ostrihon, 2020;Valinskyt ̇e & Rupeika, 2015), or multinomial logit (Caggiano et al, 2016;Ciarlone & Trebeschi, 2005) models with random effects. Given our objective, we opt for a simple bivariate pooled logit model with random effects, as in Boyd et al (2009).…”
Section: T a B L E 3 Confusion Matrixmentioning
confidence: 99%
“…Discrete choice models belong to the most commonly used approaches to assess the predictive properties of EWSs in the literature (Berg & Pattillo, 1999; Kaminski et al, 1997). In general, studies use either linear probability models (Davis et al, 2016), probit (Berg & Pattillo, 1999; Frankel & Rose, 1996; Mulder et al, 2016), logit (Arregui et al, 2013; Davis et al, 2016; Davis & Karim, 2008; Domonkos et al, 2017a; Ostrihon, 2020; Valinskytė & Rupeika, 2015), or multinomial logit (Caggiano et al, 2016; Ciarlone & Trebeschi, 2005) models with random effects. Given our objective, we opt for a simple bivariate pooled logit model with random effects, as in Boyd et al (2009).…”
Section: Comparing the Databasesmentioning
confidence: 99%