We have introduced a high throughput quantitative proteomics workflow, combined precursor isotopic labeling and isobaric tagging (cPILOT) capable of multiplexing up to 22 or 24 samples with tandem mass tags or isobaric N,N-dimethyl leucine isobaric tags, respectively, in a single experiment. This enhanced sample multiplexing considerably reduces mass spectrometry acquisition times and increases the utility of the expensive commercial isobaric reagents. However, the manual process of sample handling and pipetting steps in the strategy can be labor intensive, time consuming, and introduce sample loss and quantitative error. These limitations can be overcome through the incorporation of automation. Here we transferred the manual cPILOT protocol to an automated liquid handling device that can prepare large sample numbers (i.e., 96 samples) in parallel. Overall, automation increases feasibility and reproducibility of cPILOT and allows for broad usage by other researchers with comparable automation devices. as blood serum/plasma, proximal fluids, and tissues 1 , 2 .Proteomics biomarker discovery and validation have recently gained significant consideration due to the power of sample multiplexing strategies 3 , 4 . Sample multiplexing is a technique that enables simultaneous comparison and quantification of two or more sample conditions within a single MS injection 5 , 6 . Sample multiplexing is achieved by barcoding peptides or proteins from multiple samples with chemical, enzymatic, or metabolic tags and obtaining MS information from all samples in a single MS or MS/MS experiment. Among the available isobaric tags are isobaric tagging reagents (iTRAQ), commercial tandem mass tags (TMT), and in house