We have used gene targeting to create a mouse model of glycogen storage disease type II, a disease in which distinct clinical phenotypes present at different ages. As in the severe human infantile disease (Pompe Syndrome), mice homozygous for disruption of the acid ␣-glucosidase gene (6 neo /6 neo ) lack enzyme activity and begin to accumulate glycogen in cardiac and skeletal muscle lysosomes by 3 weeks of age, with a progressive increase thereafter. By 3.5 weeks of age, these mice have markedly reduced mobility and strength. They grow normally, however, reach adulthood, remain fertile, and, as in the human adult disease, older mice accumulate glycogen in the diaphragm. By 8 -9 months of age animals develop obvious muscle wasting and a weak, waddling gait. This model, therefore, recapitulates critical features of both the infantile and the adult forms of the disease at a pace suitable for the evaluation of enzyme or gene replacement. In contrast, in a second model, mutant mice with deletion of exon 6 (⌬6/⌬6), like the recently published acid ␣-glucosidase knockout with disruption of exon 13
Combined
precursor isotopic labeling and isobaric tagging (cPILOT)
is an enhanced multiplexing strategy currently capable of analyzing
up to 24 samples simultaneously. This capability is especially helpful
when studying multiple tissues and biological replicates in models
of disease, such as Alzheimer’s disease (AD). Here, cPILOT
was used to study proteomes from heart, liver, and brain tissues in
a late-stage amyloid precursor protein/presenilin-1 (APP/PS-1) human
transgenic double-knock-in mouse model of AD. The original global
cPILOT assay developed on an Orbitrap Velos instrument was transitioned
to an Orbitrap Fusion Lumos instrument. The advantages of faster scan
rates, lower limits of detection, and synchronous precursor selection
on the Fusion Lumos afford greater numbers of isobarically tagged
peptides to be quantified in comparison to the Orbitrap Velos. Parameters
such as LC gradient, m/z isolation
window, dynamic exclusion, targeted mass analyses, and synchronous
precursor scan were optimized leading to >600 000 PSMs,
corresponding
to 6074 proteins. Overall, these studies inform of system-wide changes
in brain, heart, and liver proteins from a mouse model of AD.
Purpose
The aims of this study are to establish a time point to determine the most beneficial time to administer GCEE post incident to reduce oxidative damage and second, by using redox proteomics, to determine if GCEE can readily suppress 3-NT modification in TBI animals.
Experimental design
By using a moderate traumatic brain injury model with Wistar rats, it is hypothesized that the role of 3-nitrotyrosine (3-NT) formation as an intermediate will predict the involvement of protein nitration/nitrosation and oxidative damage in the brain.
Results
In this experiment, the levels of protein carbonyls, 4-hydroxynonenal, and 3-nitrotyrosine were significantly elevated in TBI injured, saline treated rats compared with those who sustained an injury and were treated with 150 mg/kg of the glutathione mimetic, GCEE.
Conclusion and clinical relevance
Determining the existence of elevated 3-NT levels provides insight into the relationship between the protein nitration/nitrosation and the oxidative damage, which can determine the pathogenesis and progression of specific neurological diseases.
There is an increasing demand to analyze many biological samples for disease understanding and biomarker discovery. Quantitative proteomics strategies that allow simultaneous measurement of multiple samples have become widespread and greatly reduce experimental costs and times. Our laboratory developed a technique called combined precursor isotopic labeling and isobaric tagging (cPILOT), which enhances sample multiplexing of traditional isotopic labeling or isobaric tagging approaches. Global cPILOT can be applied to samples originating from cells, tissues, bodily fluids, or whole organisms and gives information on relative protein abundances across different sample conditions. cPILOT works by 1) using low pH buffer conditions to selectively dimethylate peptide N-termini and 2) using high pH buffer conditions to label primary amines of lysine residues with commercially-available isobaric reagents (see Table of Materials/Reagents). The degree of sample multiplexing available is dependent on the number of precursor labels used and the isobaric tagging reagent. Here, we present a 12-plex analysis using light and heavy dimethylation combined with six-plex isobaric reagents to analyze 12 samples from mouse tissues in a single analysis. Enhanced multiplexing is helpful for reducing experimental time and cost and more importantly, allowing comparison across many sample conditions (biological replicates, disease stage, drug treatments, genotypes, or longitudinal time-points) with less experimental bias and error. In this work, the global cPILOT approach is used to analyze brain, heart, and liver tissues across biological replicates from an Alzheimer's disease mouse model and wild-type controls. Global cPILOT can be applied to study other biological processes and adapted to increase sample multiplexing to greater than 20 samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.