This paper establishes the equivalent relationships between the half-sinusoidal load, triangular load, vertical stepwise load, and moving traffic load. The governing equation was established for analyzing the dynamic responses of pavement, and half-sinusoidal load, triangular load, and vertical stepwise load functions were transformed into Fourier series expressions. The partial differential governing equations were simplified as ordinary differential equations and the analytical solutions were obtained. Further, the solutions were validated through comparing the theoretical results with numerical simulated results. Calculation results revealed that, for unchanged load periods, increasing the amplitudes of the three loads by 1.06, 1.31, and 1.35 times can better simulate the moving traffic loads. For unchanged load function amplitudes, increasing the function periods by 1.07, 2.23, and 2.1 times (for half-sinusoidal, triangular, and vertical stepwise loads, resp.) can improve the simulation performance. The fatigue life of asphalt pavements under the moving traffic load agrees with that of the three load simulations, indicating that the fatigue life of asphalt pavements is only associated with the load amplitude but not the load patterns.