Hexavalent chromium (Cr(VI)) in water is a proven carcinogen to different internal and external organs of the living organisms. There are different human activities incorporated to the anthropogenic sources in the environment enriching Cr(VI) of high concentration in the water system above the regulatory level. The physical, chemical and biological properties of chromium favour the dissolution in the water environment. This concerns the environmental researcher to tackle and mitigate. Chemical or biological techniques or a combination of the two have been used to remove Cr(VI) from polluted waters. Biological techniques include integrated bioremediation, such as the primary processes of direct bioreduction and biosorption, and secondary processes of microbial fuel cell, biostimulation, surface modified dry biomass and biochar adsorption, and engineered biofilm and cell free reductase. These techniques are used by a wide range of living organisms including bacteria, fungi, plants, plant leaves, plant nuts and algae. This group of living organisms transform and remove Cr(VI) from water during the cellular metabolisms, extracellular activities, physical and chemical adsorptions on the cell surface, and photosynthesis. Variation of different physical, chemical and environmental parameters affecting the efficiency of the bioremediation process have impacted on the design of bioreactors. There has been a recent development of a microbial fuel cell which use the proximity of Cr(VI) reduction as a cathode half cell for the generation of renewable energy and simulation of its' removal from water.