The solution structure, stabilities, physical properties, and reactivities of sodium diisopropylamide (NaDA) in a variety of coordinating solvents are described. NaDA is stable for months as a solid or as a 1.0 M solution in N,N-dimethylethylamine (DMEA) at −20 °C. A combination of NMR spectroscopic and computational studies show that NaDA is a disolvated symmetric dimer in DMEA, N,N-dimethyl-n-butylamine, and N-methylpyrrolidine. Tetrahydrofuran (THF) readily displaces DMEA, affording a tetrasolvated cyclic dimer at all THF concentrations. Dimethoxyethane (DME) and N,N,N′,N′-tetramethylethylenediamine (TMEDA) quantitatively displace DMEA, affording doubly chelated symmetric dimers. The trifunctional ligands N,N,N′,N″,N″-pentamethyldiethylenetriamine and diglyme bind the dimer as bidentate rather than tridentate ligands. Relative rates of solvent decompositions are reported, and rate studies for the decomposition of THF and DME are consistent with monomer-based mechanisms.