A 1:1 mixture of pseudoenantiomeric aminomethylenehelicene (P)-tetramer and (M)-pentamer formed three states, namely, the heterodouble helices B and C and the random coil A. At high temperatures, A is the most stable. At low temperatures, C is the most stable, and the structural changes from A to the metastable state B to the product C occur, where B and C have pseudoenantiomeric helical structures. Heating then converts C to A. Essentially, all the molecules change their structure from A to B to C to A. Various nonequilibrium reversible thermodynamic responses appeared depending on thermal conditions: The metastable states A and B can be interconverted with thermal hysteresis without forming C in a far-from-equilibrium manner; three-state hysteresis occurs; states A and B can be frozen at low temperatures and defrosted by warming. An energy and population model for the three-state switching is given, involving inversion of thermodynamic stability and thermal hysteresis.
Molecular switching is a phenomenon in which the molecular structure reversibly changes in response to external stimulation. It is crucial in biology and is used in various biological sensing applications and responses. In contrast to the well-studied molecular switching involving two or more thermodynamically stable states, switching involving metastable states exhibits notable non-equilibrium thermodynamic properties. Synthetic chiral helicene oligomeric foldamers that exhibit molecular thermal hysteresis in dilute solution are examples. Molecular switching can be used for sensing environmental changes, including temperature threshold, temperature decrease/increase, rate of temperature decrease, counting the numbers 1 and 2, and concentration increase.
3,4-Dihydrocoumarin derivatives were synthesized in a highly enantioselective manner from 3-(2-hydroxyphenyl)cyclobutanones through enantioselective carbon−carbon bond cleavage. A cascade reaction with electron-deficient alkenes introduced a carbon−carbon bond at the 5-position of the dihydrocoumarins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.