Distributed temperature sensing (DTS) has been used for fracture parameter diagnosis and flow profile monitoring. In this paper, we present a new model for predicting the temperature profile of two-phase flow multistage fractured horizontal wells in the tight oil reservoirs. The homogeneous reservoir flow/heat transfer model is extended to the tight oil reservoir-fracture-wellbore coupled flow/thermal model. The influence of SRV area on reservoir and wellbore is considered, and the Joule-Thomson effect, heat convection, heat conduction, and other parameters are introduced into the improved model. The temperature distributions of reservoir and wellbore with different production times, water cut, and locations of water entry are simulated. The simulated results indicate that the Joule-Thomson effect will cause wellbore temperature to rise; the temperature of fractures with more water production is significantly lower than that of other fractures, and the water outlet location can be judged according to the temperature change of the wellbore. By using the improved temperature prediction model, the DTS monitoring data of two-phase flow multistage fractured horizontal well in the tight reservoir has been calculated and analyzed, and the accurate production profile has been obtained.