Microwave Tomography Technique (MTT) is an emerging technology that is showing its effectiveness in detecting Cancer at early stage. Due to absolute random and non-deterministic characteristics of Cancer cells, more advancements are required in MTT to accurately detect the presence as well as the location of the affected region. Considering this fundamental issue, in this paper, we have proposed a modified Exact Reconstruction Algorithm (mERA) which is capable enough to provide a detailed analysis of all kinds of complex dielectric perturbations of a cancer affected biological target. In MTT, the detection of presence of a cancerous tumor inside any organ of human body has been done using different image reconstruction algorithms. On the other hand, this algorithm uses a selective data segregation mechanism to generate the perturbed complex cell permittivities of the affected organ tissues. Through this study, it has also been verified that how efficiently our proposed approach can able to detect all types of dielectric variations that may be large (20%), small (5%), positive or may be negative and even in a mixed kind of scenario where affected cells possess the mixture of all types of perturbations simultaneously. As cancerous cell shows peculiar behaviour inside human body and its nature varies from person to person and even in-between different stages (stage 1, stage 2, stage 3, stage 4) of cancer, the algorithm is designed in such a fashion that it can able to detect the presence of tumor considering all such possibilities into account. The results validate its high accuracy and effectiveness in the field of cancer diagnosis.