Anatomically realistic numerical breast models are essential tools for microwave breast imaging, supporting feasibility analysis, performance verification, and design improvements. Patient-specific models also assist in interpreting the results of the patient studies conducted on microwave imaging prototype systems. The proposed method employs automated and robust 3D processing techniques to construct flexible and reconfigurable breast models. These techniques include noise and artifact suppression with a principal component analysis (PCA) approach, and oversampling of the magnetic resonance imaging (MRI) data to enhance the intensity continuity. The k-means clustering segmentation identifies fatty and fibroglandular tissues and further segments these regions into a selected number of tissues, providing reconfigurable models. A peak Gaussian fitting technique maps the model clusters to the dielectric properties. The robustness of the proposed method is verified by applying it to both 1.5- and 3-T MRI scans as well as to scans of varying breast densities.
Abstract-In this paper, we present an experimental verification of a novel QR-TLS algorithm. Two other algorithms for direction of arrival (DOA) estimation of multiple incident source signals called multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT) are implemented on a National Instruments (NI) PXI platform. The proposed method is based on subspace decomposition of a received data into a signal and a noise space using QR decomposition. The angle of the signal arrival information is extracted from the signal subspace by using the method of total least squares (TLS). The algorithms are implemented in LabView NI hardware. The experimental procedures are discussed in details which includes interfacing of the uniform linear array (ULA) of antennas with the NI-PXI platform, calibrating phase differences between the RF receivers, and selecting transmitter and receiver parameters, for determining the DOAs of the multiple incident source signals. The experimental results are shown for a single and two sources lying at arbitrary angles from the array reference to verify the successful real time implementation of the proposed and other DOA estimation algorithms.
Evaluating the quality of reconstructed images requires consistent approaches to extracting information and applying metrics. Partitioning medical images into tissue types permits the quantitative assessment of regions that contain a specific tissue. The assessment facilitates the evaluation of an imaging algorithm in terms of its ability to reconstruct the properties of various tissue types and identify anomalies. Microwave tomography is an imaging modality that is model-based and reconstructs an approximation of the actual internal spatial distribution of the dielectric properties of a breast over a reconstruction model consisting of discrete elements. The breast tissue types are characterized by their dielectric properties, so the complex permittivity profile that is reconstructed may be used to distinguish different tissue types. This manuscript presents a robust and flexible medical image segmentation technique to partition microwave breast images into tissue types in order to facilitate the evaluation of image quality. The approach combines an unsupervised machine learning method with statistical techniques. The key advantage for using the algorithm over other approaches, such as a threshold-based segmentation method, is that it supports this quantitative analysis without prior assumptions such as knowledge of the expected dielectric property values that characterize each tissue type. Moreover, it can be used for scenarios where there is a scarcity of data available for supervised learning. Microwave images are formed by solving an inverse scattering problem that is severely ill-posed, which has a significant impact on image quality. A number of strategies have been developed to alleviate the ill-posedness of the inverse scattering problem. The degree of success of each strategy varies, leading to reconstructions that have a wide range of image quality. A requirement for the segmentation technique is the ability to partition tissue types over a range of image qualities, which is demonstrated in the first part of the paper. The segmentation of images into regions of interest corresponding to various tissue types leads to the decomposition of the breast interior into disjoint tissue masks. An array of region and distance-based metrics are applied to compare masks extracted from reconstructed images and ground truth models. The quantitative results reveal the accuracy with which the geometric and dielectric properties are reconstructed. The incorporation of the segmentation that results in a framework that effectively furnishes the quantitative assessment of regions that contain a specific tissue is also demonstrated. The algorithm is applied to reconstructed microwave images derived from breasts with various densities and tissue distributions to demonstrate the flexibility of the algorithm and that it is not data-specific. The potential for using the algorithm to assist in diagnosis is exhibited with a tumor tracking example. This example also establishes the usefulness of the approach in evaluating the performance of the reconstruction algorithm in terms of its sensitivity and specificity to malignant tissue and its ability to accurately reconstruct malignant tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.