2021
DOI: 10.1016/j.ecosta.2020.10.004
|View full text |Cite
|
Sign up to set email alerts
|

Evaluating restricted common factor models for non-stationary data

Abstract: Approximate factor models with restrictions on the loadings may be interesting both for structural analysis (simpler structures are easier to interpret) and forecasting (parsimonious models typically deliver superior forecasting performances). However, the issue is largely unexplored. In particular, no currently available test is entirely suitable for the empirically important case of non-stationary data. Building on the intuition that defactoring the data under a correct set of restrictions will lower the num… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance