Disturbance is common in natural ecosystems, but increasingly defines them. While there are many descriptions for the dynamics of an ecosystem's response to disturbance, there are few descriptions for the dynamics of the disturbance itself. I describe a novel application of a model based on the production of amplitude envelopes in acoustics and electronic music synthesis, with varying parameters Attack, Decay, Sustain, and Release (ADSR). I show that varying the parameters of the ADSR model is sufficient to produce and vary the qualitative disturbance regimes described by previous authors, and is capable of producing dynamics not previously considered. I tested the utility of the ADSR model by applying it to a logistic growth model. I found that manipulating the attack and release parameters of the ADSR model changes the population dynamics estimated by these models. This implies that responses to disturbance are determined not only by the resilience and resistance of the ecological system, but also the dynamics of the disturbance itself. My hope is that the ADSR model will prove useful to researchers in either describing disturbances in long‐term ecological data, or in producing disturbances for simulations or experiments.