Overdispersion is a common problem in count data that can lead to inaccurate parameter estimates in Poisson regression models. Quasi-Poisson and negative binomial regressions are often used to address overdispersion but have limitations, especially with small samples. The Conway-Maxwell Poisson (CMP) regression model, an extension of the Poisson distribution, effectively addresses both overdispersion and underdispersion, even with limited data, due to additional parameters that better control data dispersion. The Infant Mortality Rate (IMR) is a critical public health indicator, reflecting healthcare quality and broader social, economic, and environmental factors. Accurate IMR estimation is essential for evaluating health policies. This study aims to (1) identify overdispersion in IMR data from South Sulawesi, (2) model IMR using CMP regression, and (3) identify factors influencing IMR. The dataset includes IMR, Low Birth Weight (LBW), diarrhea, asphyxia, pneumonia, and exclusive breastfeeding. Analysis showed significant overdispersion with a ratio of 4.639, making CMP the optimal model with an AIC of 186.845. Significant factors identified were LBW, asphyxia, pneumonia, and exclusive breastfeeding. These findings advance statistical methodologies for count data analysis and offer a more accurate approach to evaluating public health policies, supporting efforts to reduce infant mortality in South Sulawesi Province.