Decision-makers in wildlife policy require reliable population size estimates to justify interventions, to build acceptance and support in their decisions and, ultimately, to build trust in managing authorities. Traditional capture-recapture approaches present two main shortcomings, namely, the uncertainty in defining the effective sampling area, and the spatially-induced heterogeneity in encounter probabilities. These limitations are overcome using spatially explicit capture-recapture approaches (SCR). Using wolves as case study, and non-invasive DNA monitoring (faeces), we implemented a SCR with a Poisson observation model in a single survey to estimate wolf density and population size, and identify the locations of individual activity centres, in NW Iberia over 4,378 km 2 . During the breeding period, posterior mean wolf density was 2.55 wolves/100 km 2 (95%BCI = 1.87-3.51), and the posterior mean population size was 111.6 ± 18.8 wolves (95%BCI = 81.8-153.6). From simulation studies, addressing different scenarios of non-independence and spatial aggregation of individuals, we only found a slight underestimation in population size estimates, supporting the reliability of SCR for social species. The strategy used here (DNA monitoring combined with SCR) may be a cost-effective way to generate reliable population estimates for large carnivores at regional scales, especially for endangered species or populations under game management.Estimating the abundance of species is one of the most contentious issues in conservation and applied ecology 1,2 . Decision-makers in wildlife policy require reliable population size and density estimates to adopt and justify interventions. Reliability is essential to build acceptance and support in management decisions and, ultimately, trust in managing authorities. Otherwise, speculation and distrust can emerge after decisions are made, and may undermine entire management or conservation strategies 1,3 . Incorrect population estimates may lead to misinterpretations of the status of populations, the impact of interventions (e.g., hunting quotas or culling programs), or the degree to which conservation goals have been achieved.The management of large carnivores is controversial due to the multiple political, socio-economic and conservation interests involved. Information on population size or the impact of interventions is in constant demand, not only by managers, researchers and conservationists, but also by other interest groups. This is exemplified by recurrent debates around large carnivore numbers, particularly centred on endangered and charismatic species, such as in the case of tigers (Panthera tigris), lions (Panthera leo) or wolves (Canis lupus) [4][5][6][7][8] . Clear population targets are often established by managing authorities, and have become political issues, with reliable assessments of changes in large carnivore ranges and population size required to justify actions 9 .Wolves are a good example of a species whose estimates of population size and range are systemati...