Appropriate acquisition and assessment of the dominant acoustic emission (AE) signal attributes generated under various experimental cutting conditions may provide significant knowledge. Consequently, it enhances the efficiency in manufacturing process monitoring and control. However, according to the literature, a lack of information was noticed on the behavior of AE signal attributes under various cutting conditions. Considering that milling is among the most widely used machining operations, the aim of this investigation is to acquire adequate knowledge about interactions between cutting parameters and their direct and indirect effects on the obtained AE signals attributes from the milling process. In the course of this work, the effects of cutting conditions on the attributes calculated from wavelet transform (WT) of AE signals will be presented. WT signal processing was conducted with five models of mother wavelets, and appropriate decomposition numbers were deployed. The approximated signal attributes obtained from each decomposition were assessed. According to signal processing and statistical calculations, cutting speed, feed rate, and coating significantly impacted the variation of AE signal attributes. Also, the most sensitive AE signal attributes and decompositions were rms, std, entropy and energy, and 2nd and 6th decompositions, respectively. The outcome of this work can be integrated into advanced artificial intelligence (AI) approaches to implement real-time monitoring of manufacturing processes.