Frequent extreme climate events and rapid global urbanization have amplified the occurrence of accidents such as waterlogging or the overflow of pollution in big cities. This has increased the application scenarios of large-sized deep drainage tunnel projects (LSDDTPs). The scientific and accurate evaluation of the construction safety risks of LSDDTP can effectively reduce the corresponding economic losses and casualties. In this paper, we employed the hierarchical holographic model to construct the safety risk list of LSDDTPs in terms of the risk source and construction unit. Based on social network analysis, we then screened key indicators and calculated the weights of all secondary indicators from the correlation between risk factors. We subsequently developed a construction safety risk assessment model of LSDDTPs based on the matter-element extension method. The Donghu Deep Tunnel Project in Wuhan, China, was selected as a case study for the proposed method. The results of empirical research demonstrated that eight indicators (e.g., failure to effectively detect the change of the surrounding environment of the tunnel project) were key factors affecting the construction safety risk of IV, which is within the acceptable risk level. Our proposed model outperformed other methods (the fuzzy comprehensive evaluation, analytic hierarchy process, entropy weight method, and comprehensive weight method) in terms of scientific validity and research advancements.