As the heart of an aircraft, the aircraft engine's condition directly affects the safety, reliability, and operation of the aircraft. Prognostics and health management for aircraft engines can provide advance warning of failure and estimate the remaining useful life. However, aircraft engine systems are complex with both intangible and uncertain factors, it is difficult to model the complex degradation process, and no single prognostic approach can effectively solve this critical and complicated problem. Thus, fusion prognostics is conducted to obtain more accurate prognostics results. In this paper, a prognostics and health management-oriented integrated fusion prognostic framework is developed to improve the system state forecasting accuracy. This framework strategically fuses the monitoring sensor data and integrates the strengths of the data-driven prognostics approach and the experience-based approach while reducing their respective limitations. As an application example, this developed fusion prognostics framework is employed to predict the remaining useful life of an aircraft gas turbine engine based on sensor data. The results demonstrate that the proposed fusion prognostics framework is an effective prognostics tool, which can provide a more accurate and robust remaining useful life estimation than any single prognostics method.Index Terms-Fusion prognostics, sensor data, prognostics and health management, remaining useful life, aircraft engines.