To develop a cost-effective condition-based maintenance strategy, accurate prediction of the Remaining Useful Life (RUL) is the key. It is known that many failure mechanisms in engineering can be traced back to some underlying degradation processes. This article proposes a two-stage prognostic framework for individual units subject to hard failure, based on joint modeling of degradation signals and time-to-event data. The proposed algorithm features a low computational load, online prediction, and dynamic updating. Its application to automotive battery RUL prediction is discussed in this article as an example. The effectiveness of the proposed method is demonstrated through a simulation study and real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.