“…Despite this result, a general pattern was observed where partitioning essays intended to distinguish between pest presence and pest absence sites (i.e., binary, absence-only) were better resolved by hierarchical MC algorithms (i.e., pests 1, 3, 4, 5, and 6), whereas more sophisticated approaches (i.e., SOM, DIA, MCL) were necessary to find differentiated levels of pest presence within general presence clusters (i.e., pests 1, 4, 5 and 6). This trend is consistent with published research that highlights the efficiency of hierarchical MC algorithms (i.e., SL, CL, WL) to partition sets of well-separated binary data (whether biologically meaningful or not) [10,65,66], as well as that of partitioning and model-based algorithms (i.e., MCL, DIA, SOM) to perform this same task with data sets that include observations more closely positioned in statistical space [50,67,68]. It must be noted, however, that plenty of other research works successfully explore the implementation of hierarchical clustering methods to partition spatially close data sets, as well as partitioning and model-based approaches to partition well separated binary data sets.…”