1995
DOI: 10.1175/1520-0434(1995)010<0498:eoyoqp>2.0.co;2
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of 33 Years of Quantitative Precipitation Forecasting at the NMC

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

11
116
0
4

Year Published

2004
2004
2017
2017

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 195 publications
(131 citation statements)
references
References 0 publications
11
116
0
4
Order By: Relevance
“…Precipitation is one of the most difficult parameters to forecast in numerical weather prediction (Olson et al, 1995;Wang and Seaman, 1997). The question if an increase in horizontal resolution can produce more skilful precipitation forecasts is discussed, among others, by Ducrocq et al (2002), Lagouvardos et al (2003), Kotroni and Lagouvardos (2004).…”
Section: Introductionmentioning
confidence: 99%
“…Precipitation is one of the most difficult parameters to forecast in numerical weather prediction (Olson et al, 1995;Wang and Seaman, 1997). The question if an increase in horizontal resolution can produce more skilful precipitation forecasts is discussed, among others, by Ducrocq et al (2002), Lagouvardos et al (2003), Kotroni and Lagouvardos (2004).…”
Section: Introductionmentioning
confidence: 99%
“…Uma possibilidade da fonte de erros do modelo pode ser devido às saídas do modelo representarem um valor médio da grade, enquanto que a variável precipitação apresenta grande variação espacial. Olson et al (1995) salientaram que a complexidade física dos processos de precipitação e as escalas de tempoespaço, envolvidas em tais processos, não são resolvidas satisfatoriamente pelos modelos numéricos. Mesmo os modelos com alta resolução de Previsão Numérica de Tempo (PNT) não conseguem estimar satisfatoriamente os campos de precipitação por meio de suas parametrizações.…”
Section: Avaliação Dos Prognósticos De Precipitação Simulada Pelo Modunclassified
“…However, it is one of the most difficult variables to forecast, because of its inherent spatial and temporal variability (Wilson and Vallée, 2002;Antolik, 2000). For this reason, the temporal and spatial scales involved are not yet solved satisfactorily by the available numerical models (Olson et al, 1995). Ramos (2000), studying artificial neural networks (ANNs) and multiple linear regression (MLR), found that the neural-network method performed better than the linearregression method, although both showed good performance for monthly and seasonal rainfall.…”
Section: Introductionmentioning
confidence: 99%