Magnetic resonance imaging (MRI) is an appealing technology for fetal cardiovascular assessment. It can be used to visualize fetal cardiac and vascular anatomy, to quantify fetal blood flow, and to quantify fetal blood oxygen saturation and hematocrit. However, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the human fetus, the lack of conventional cardiac gating methods to synchronize data acquisition, and the potential corruption of MRI data due to maternal respiration and unpredictable fetal movements. In this review, we discuss recent technical advances in accelerated imaging, image reconstruction, cardiac gating, and motion compensation that have enabled dynamic MRI of the fetal heart.