This article presents a historical overview of research in reconfigurable flight control. For the purpose of this article, the term 'reconfigurable flight control' is used to refer to software algorithms designed specifically to compensate for failures or damage of flight control effectors or lifting surfaces, using the remaining effectors to generate compensating forces and moments. This article will discuss initial research and flight testing of approaches based on explicit fault detection, isolation, and estimation, as well as later approaches based on continuously adaptive and intelligent control algorithms. In addition, approaches for trajectory reshaping of an impaired aircraft with reconfigurable inner loop control laws will be briefly discussed. Finally, there will be some discussion on current implementations of reconfigurable control to improve safety on production and flight test aircraft and remaining challenges to enable broader use of the technology, such as the difficulties of flight certification of these types of approaches.