Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Polybrominated diphenyl ethers (PBDEs) are used as additives in polymers and teiles to prohibit the development offires. Because ofthe production and use of PBDEs, the lipophilic haracteristics, and persistence, these compounds have become ubiquitous environmental con aminants. The aim of the present study was to determine potential exposures of PBDE to derks working filltime at computer screen and persomnnel at an elecnics-disntling plant, with hospitl deaners as a control group. Five PBDE congeners-2,2',4,4'-tetraBDE; 2,2',4,4',5,2,2',4,4',5,2,2',3,4,4',5',
Polybrominated diphenyl ethers (PBDEs) are used as additives in polymers and teiles to prohibit the development offires. Because ofthe production and use of PBDEs, the lipophilic haracteristics, and persistence, these compounds have become ubiquitous environmental con aminants. The aim of the present study was to determine potential exposures of PBDE to derks working filltime at computer screen and persomnnel at an elecnics-disntling plant, with hospitl deaners as a control group. Five PBDE congeners-2,2',4,4'-tetraBDE; 2,2',4,4',5,2,2',4,4',5,2,2',3,4,4',5',
Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in plastics (concentration, 5--30%) and in textile coatings. Commercial products consist predominantly of penta-, octa-, and decabromodiphenyl ether mixtures, and global PBDE production is about 40,000 tons per year. PBDEs are bioaccumulated and biomagnified in the environment, and comparatively high levels are often found in aquatic biotopes from different parts of the world. During the mid-1970--1980s there was a substantial increase in the PBDE levels with time in both sediments and aquatic biota, whereas the latest Swedish data (pike and guillemot egg) may indicate that levels are at steady state or are decreasing. However, exponentially increasing PBDE levels have been observed in mother's milk during 1972--1997. Based on levels in food from 1999, the dietary intake of PBDE in Sweden has been estimated to be 0.05 microg per day. Characteristic end points of animal toxicity are hepatotoxicity, embryotoxicity, and thyroid effects as well as maternal toxicity during gestation. Recently, behavioral effects have been observed in mice on administration of PBDEs during a critical period after birth. Based on the critical effects reported in available studies, we consider the lowest-observed-adverse-effect level (LOAEL) value of the PBDE group to be 1 mg/kg/day (primarily based on effects of pentaBDEs). In conclusion, with the scientific knowledge of today and based on Nordic intake data, the possible consumer health risk from PBDEs appears limited, as a factor of over 10(6) separates the estimated present mean dietary intake from the suggested LOAEL value. However, the presence of many and important data gaps, including those in carcinogenicity, reproduction, and developmental toxicity, as well as additional routes of exposure, make this conclusion only preliminary. Moreover, the time trend of PBDEs in human breast milk is alarming for the future.
The article contains sections titled: 1. Introduction 1.1. A Strategy Appropriate to Trace Analysis 1.2. Avoidance of Systematic Errors 1.2.1. Trace Losses and Contamination 1.2.2. Uncertainty 2. Sample Preparation and Digestion in Inorganic Analysis 2.1. Sample Treatment after the Sampling Process 2.1.1. Stabilization, Drying, and Storage 2.1.2. Homogenization and Aliquoting 2.1.3. Requirements with Respect to Materials and Chemicals 2.2. Sample‐Preparation Techniques; General Considerations 2.2.1. Special Factors Associated with Microwave‐Assisted Digestion 2.2.2. Safety Considerations 2.3. Wet Digestion Techniques 2.3.1. Wet Digestion at Atmospheric Pressure 2.3.2. Pressure Digestion 2.3.2.1. Thermally Convective Pressure Digestion 2.3.2.2. Microwave‐Assisted Pressure Digestion 2.4. “Dry” Digestion Techniques 2.4.1. Combustion in Air 2.4.2. Combustion in Oxygen 2.4.3. Cold‐Plasma Ashing 2.4.4. Fusion 2.5. Illustrative Examples 2.5.1. Sample Preparation as a Function of Analytical Method 2.5.2. Combined Use of Multiple Decomposition Techniques 2.5.3. Comparative Merits of the Various Sample‐Preparation Techniques 2.5.4. Decomposition Procedures for Determining Nonmetals 2.6. Evaluation Criteria 2.6.1. Completeness 2.6.2. Uncertainty 2.6.3. Time Factors 2.6.4. The Final Result 2.7. Concentration and Separation of Inorganic Trace Materials 2.8. Automation and Direct Analysis 2.8.1. Automation 2.8.2. Direct Analysis 2.9. Analysis of Element Species 3. Sample Preparation in Organic Analysis 3.1. Sample Treatment after the Sampling Process 3.1.1. Stabilization, Drying, and Storage 3.1.2. Homogenization and Aliquoting 3.1.3. Requirements with Respect to Materials and Chemicals 3.2. Separation of the Analyte 3.2.1. Hydrolysis 3.2.2. Liquid ‐ Liquid Extraction 3.2.3. Soxhlet Extraction 3.2.4. Microwave‐Assisted Solvent Extraction 3.2.5. Supercritical Fluid Extraction (SFE) 3.2.6. Solid‐Phase Extraction (SPE) 3.2.7. Solid‐Phase Microextraction (SPME) 3.2.8. Stir‐Bar Adsorptive Extraction (SBSE) 3.2.9. Miscellaneous Techniques 3.3. Headspace Techniques 3.3.1. Static Headspace Technique 3.3.2. Dynamic Headspace Technique (Purge and Trap) 3.4. Determination of Trace Organic Materials in Air Samples 3.5. Analyte Concentration 3.6. Derivatization 3.7. Coupled Techniques Trace analysis is a very relevant and applications‐oriented branch of analytical chemistry. The sample preparation for trace analysis must be custom‐tailored to the problem at hand. Systematic errors can arise by contact with vessel materials, reagents, or the ambient atmosphere, as well as any change in chemical or physical state. In inorganic analysis, sample preparation has to meet the requirements for a substantially trouble‐free determination of the analyte. Digestion of the matrix (microwave digestion, wet digestion, dry digestion techniques) and subsequent careful comparison of several decomposition techniques is therefore an essentially important step. Some separation and concentration techniques of the analytes are liquid –liquid extraction, solid‐phase extraction, special precipitation reactions, and electrolytic deposition. The introduction of laboratory robots should make it possible to incorporate a significant degree of automation into the time‐consuming, labor‐intensive area of sample preparation as well, leading to more efficient, reliable, and reproducible sample work‐up. The goal of sample preparation in organic trace analysis is to isolate the analyte from the sample matrix (e.g., liquid‐liquid extraction, Soxhlet extraction, microwave‐assisted solvent extraction, steam distillation) and then concentrate it and convert it into a form suitable for analysis by the selected method. Separation and concentration of an analyte must often be followed by some type of derivatization. Various coupled sample preparation and determination processes are increasingly utilized in trace organic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.