2016
DOI: 10.1016/j.anifeedsci.2016.09.010
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of botanical and chemical composition of sheep diet by using faecal near infrared spectroscopy

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 10 publications
0
7
0
2
Order By: Relevance
“…Other works provided similar or better results developing fecal NIRS prediction models to estimate plant species diet composition in livestock: cattle (R 2 CAL = 0.94 just for monocots and dicots proportions [ 21 , 25 ]); goat (R 2 CAL = 0.95 to 0.99 depending on the plant taxa hay, Pistacia lentiscus, Phillyrea latifolia and Pinus brutia [ 57 ]; R 2 = 0.85 for herbaceous vegetation as one category; R 2 = 0.89 for Phillyrea latifolia ; R 2 = 0.77 for tannin-rich Pistacia lentiscus [ 58 ]); and sheep (R 2 CAL = 0.96 for Artemisia tridentata [ 59 ]; R 2 CAL = 0.86 to 0.97 depending on the plant taxa species: alfalfa, cereal straw, maize and forage [ 27 ]). The better NIRS prediction power in plant taxa diet composition in the livestock studies may be due to the fact that the reference method was the actual diet intake, since diets were already known and very few species were represented in those diets.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Other works provided similar or better results developing fecal NIRS prediction models to estimate plant species diet composition in livestock: cattle (R 2 CAL = 0.94 just for monocots and dicots proportions [ 21 , 25 ]); goat (R 2 CAL = 0.95 to 0.99 depending on the plant taxa hay, Pistacia lentiscus, Phillyrea latifolia and Pinus brutia [ 57 ]; R 2 = 0.85 for herbaceous vegetation as one category; R 2 = 0.89 for Phillyrea latifolia ; R 2 = 0.77 for tannin-rich Pistacia lentiscus [ 58 ]); and sheep (R 2 CAL = 0.96 for Artemisia tridentata [ 59 ]; R 2 CAL = 0.86 to 0.97 depending on the plant taxa species: alfalfa, cereal straw, maize and forage [ 27 ]). The better NIRS prediction power in plant taxa diet composition in the livestock studies may be due to the fact that the reference method was the actual diet intake, since diets were already known and very few species were represented in those diets.…”
Section: Resultsmentioning
confidence: 99%
“…The NIRS technique has already been used to predict nutritional parameters and diet quality in fecal samples (fecal NIRS) of domestic (e.g., sheep [ 15 ], cattle [ 16 ]) and wild animals (e.g., Pyrenean chamois, Rupicapra pyrenaica pyrenaica [ 17 ]; red deer, Cervus elaphus and roe deer, Capreolus capreolus [ 18 ]; white-tailed deer, Odocoileus virginianus [ 19 ]) and other herbivores species [ 15 , 20 , 21 , 22 , 23 , 24 ]. Some studies used fecal NIRS to determine the plant species consumed by domestic animals (cattle [ 25 ], sheep [ 26 , 27 ], cattle and sheep [ 28 ] and pigs [ 29 ]). However, few works have been carried out to achieve a NIRS prediction model for the diet composition of wild ungulates, most likely because the broad dietary niche of these animals is a challenge for NIRS calibration.…”
Section: Introductionmentioning
confidence: 99%
“…Wavelength region selections were based on previous studies of sheep faecal analysis with NIR spectroscopy 2426 and results obtained from the study of H. contortus eggs in water suspension. Wavelength regions with the highest r 2 cv , with the lowest RMSECV and the lowest number of factors, were selected as the best regions for analysis for each specific spectrometer.…”
Section: Methodsmentioning
confidence: 99%
“…De nombreux travaux rapportent la capacité de la SPIR fécale à prédire la composition botanique de l'ingéré. Ces différentes approches peuvent consister à prédire les proportions de différentes espèces végétales dans un mélange ou le pourcentage de concentré (Landau et al, 2008 ;Núñez-Sánchez et al, 2016) ou encore les proportions entre différentes classes de végétaux (Coates et Dixon, 2008). La constitution d'étalonnages pour la prédiction qualitative de l'ingéré pose toutefois un problème méthodologique, car les essais sont en général réalisés avec des animaux confinés, alimentés avec un régime ne correspondant pas forcément aux choix alimentaires qu'auraient réalisé les animaux sur parcours (Landau et al, 2006).…”
Section: Prédiction à Partir D'échantillons De Fèces Chez Les Ruminantsunclassified
“…La constitution d'étalonnages pour la prédiction qualitative de l'ingéré pose toutefois un problème méthodologique, car les essais sont en général réalisés avec des animaux confinés, alimentés avec un régime ne correspondant pas forcément aux choix alimentaires qu'auraient réalisé les animaux sur parcours (Landau et al, 2006). De fait, même si les précisions des modèles de prédiction sont bonnes dans la phase d'étalonnage, ils ne sont généralement pas assez robustes pour prédire la diversité des espèces végétales des parcours lorsqu'ils sont testés en validation externe (Landau et al, 2006 ;Glasser et al, 2008 ;Núñez-Sánchez et al, 2016).…”
Section: Prédiction à Partir D'échantillons De Fèces Chez Les Ruminantsunclassified