The aim of this study is to propose an information extraction system, called BigGrams, which is able to retrieve relevant and structural information (relevant phrases, keywords) from semi-structural web pages, i.e. HTML documents. For this purpose, a novel semi-supervised wrappers induction algorithm has been developed and embedded in the BigGrams system. The wrappers induction algorithm utilizes a formal concept analysis to induce information extraction patterns. Also, in this article, the author (1) presents the impact of the configuration of the information extraction system components on information extraction results and (2) tests the boosting mode of this system. Based on empirical research, the author established that the proposed taxonomy of seeds and the HTML tags level analysis, with appropriate pre-processing, improve information extraction results. Also, the boosting mode works well when certain requirements are met, i.e. when well-diversified input data are ensured.