This study assessed the performance of eight general circulation models (GCMs) implemented in the upper Ouémé River basin in Benin Republic (West Africa) during the Fifth Assessment Report on Climate Change. Historical rainfall simulations of the climate model of Rossby Regional Centre (RCA4) driven by eight Coupled Model Intercomparison Project (CMIP5) GCMs over a 55-year period (1951 to 2005) are evaluated using the observational data set. Apart from daily rainfall, other rainfall parameters calculated from observed and simulated rainfall were compared. U-test and other statistical criteria (R 2 , MBE, MAE, RMSE and standard of standard deviations) were used. According to the results, the simulations correctly reproduce the interannual variability of precipitation in the upper Ouémé River basin. However, the models tend to produce drizzle. Especially, the overestimation of April, May and November rains not only explains the overestimation of seasonal and annual cumulative rainfall but also the early onset of the rainy season and its late withdrawal. However, we noted that this overestimation magnitude varies from one model to another. As for extreme rainfall indices, the models reproduced them poorly. The CanESM2, CNRM-CM5 and EC-EARTH models perform well for daily rainfall. A trade-off is formulated to select the common MPI-ESM-LR, GFDL-ESM2M, NorESM1-M and CanESM2 models for different rainfall parameters for the reliable projection of rainfall in the area. However, the MPI-ESM-LR model is a valuable tool for studying future climate change.Hydrology 2020, 7, 11 2 of 21 not allow taking into account fine-scale physical processes (e.g., local convection that determines point precipitation), which are necessary for a good representation of the local climate. To overcome this major drawback, researchers have developed regional climate models (RCMs). These models are applied in a limited area domain with lateral boundary conditions (LBCs) provided by a global climate model or reanalysis. The high-resolution RCM therefore simulates small-scale features from lower-resolution boundary information [6]. This allows the addition of small-scale information related to climate change projections [7]. However, the results of these climate models remain dependent on fairly large uncertainties [8,9]. In Africa, climate models are relatively satisfactory in predicting temperature changes. On the other hand, uncertainties remain on the results of rainfall projections. Giannini [10] has shown that there is a significant disagreement between GCMs on the future evolution of rainfall in West Africa [11,12]. In the IPCC report, no conclusions are drawn regarding the rainfall regime in West Africa. Climate projections of rainfall are therefore still uncertain for West Africa. However, West Africa is one of the most vulnerable regions of the continent, often subject to the adverse effects of climate change [13,14]. It is therefore essential to evaluate climate simulation tools in West Africa, especially considering that rainfall forec...