Purpose
Microbial contamination of contact lenses is associated with corneal infection and inflammation. This study determined which microbiological, clinical and demographic factors are associated with bacterial contamination of a silicone hydrogel contact lens when worn for continuous wear.
Methods
Two hundred five normal subjects were enrolled in the Longitudinal Analysis of Silicone Hydrogel (LASH) Contact Lens Study and were fitted with lotrafilcon A lenses for monthly continuous wear and followed for 1 year. Lenses were aseptically removed after 1 week and 4 months of wear and cultured using an agar sandwich technique. Lids and conjunctiva were routinely cultured at baseline, and after 1 week and 4 months of continuous wear. Lenses and ocular sites were considered to have substantial microbial bioburden when they harbored pathogenic organisms or high levels of commensal organisms. Univariate and multivariate logistic regression analyses were conducted to examine whether substantial conjunctival or lid bioburden, subject demographics, lens wearing history, symptoms, and biomicroscopic signs were associated with lens bioburden.
Results
About one-third (32.4%) of subjects had substantial bacterial bioburden in either eye across multiple visits. Over half (53.2%) and about one-tenth (11.7%) of subjects had substantial lid and conjunctival bioburden, respectively, and 11.2% discontinued due to discomfort. The adjusted odds ratios (and 95% confidence intervals) for presence of substantial lens bioburden were 2.49 (1.17–5.30), 4.24 (1.45–12.40), and 4.11 (1.17–14.46) for substantial lid bioburden, substantial conjunctival bioburden, and lens discomfort, respectively.
Conclusions
Bacterial contamination of silicone hydrogel contact lenses is common during continuous wear. Substantial lens bioburden is associated with discomfort precluding successful continuous wear. The presence of substantial lid and conjunctival bioburden are associated with a 2.5 fold and over 4 fold greater risk of substantial lens bioburden and are likely the major routes of contamination.