With a new era emerging in the field of lunar exploration and habitation, there is a need for research on structural forms made of local soil material (regolith), which will be able to endure the extreme conditions in harsh environments (e.g., extreme temperature fluctuations, solar and cosmic radiation, meteor showers, strong ground motions, etc.). The present work focuses on understanding the dynamic and seismic behaviour of certain structural typologies of monolithic arches by means of finite element analysis (FEA). These typologies were extensively investigated previously, using static analyses accounting for the reduced gravitational field on the moon, and proved to be of the optimum shape against certain loading scenarios. Specifically, these optimal monolithic arch forms (named enhanced varying-thickness arches -EVTAs) examined herewith, are described by varying-thickness geometry, properly enhanced at certain weak points for increasing their structural stability. Aiming at a fair comparison, the seismic behaviour of EVTAs is contrasted to that of their corresponding monolithic constant-thickness (CTAs) counterparts (having the same amount of structural material). After defining an appropriate damage state, the authors conduct preliminary pushover analyses to determine the structural capacity of the arches against lateral loading. Subsequently, the modal analysis of the EVTAs shows that the second/vertical mode exhibits a natural period almost equal to that of their first/translational mode and substantially longer than the corresponding second/vertical mode of their CTA counterparts, indicating a potential vulnerability along the vertical excitation. Furthermore, taking into account that shallow moonquakes are comparable to intraplate earthquakes in terms of hazard potential, the authors produce sets of stochastic seismic excitations used as time histories for seismic analyses. The probability of exceedance of the defined damage state as a function of the peak ground acceleration (PGA) is presented through indicative fragility curves, where the structural superiority of EVTAs against their CTA counterparts is demonstrated.