Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Respiratory muscle contraction occurs in response to the electrical stimulation of the muscles. These electrical stimuli originate in the respiratory neurons of the brainstem, are transmitted via motor nerves to the neuromuscular junctions and propagate along muscle fibers. Respiratory electromyography measures the electrical activity of respiratory muscles in response to this nerve stimulation. The neural respiratory drive (NRD) is best expressed in a phrenic neurogram, but this is not feasible in humans. Alternatively, measurements of the diaphragm electromyographic signal (EMGdi) would most likely reflect phrenic neurogram activity. EMGdi signal can be recorded using invasive methods, involving the use of needle electrodes or electrodes positioned in the esophagus at the level of the diaphragm. As a non-invasive alternative, the study of respiratory muscle activity can be addressed by surface electromyography. The onset and offset of the neural inspiratory time (nton and ntoff, respectively) are fundamentally important measurements in studies of patient-ventilator interaction, where the level of assistance delivered by the ventilator is controlled by patient demand. Cardiac artifacts (ECG) often make it difficult to utilize EMGdi. To overcome the shortcoming of the ECG, in this thesis is proposed to use sample entropy with fixed tolerance values (fSampEn), a robust technique against impulsive noise. To evaluate nton and ntoff estimation it has been carried out an experimental study with surface EMGdi signals recorded in healthy subjects during two respiratory protocols designed to evaluate the influence of different breathing patterns on the EMGdi. These protocols consisted of a stepwise increase in respiratory rate (RR) with constant fractional inspiratory time (Ti/Ttot) and a stepwise decrement in the Ti/Ttot with constant RR, respectively. The developed algorithms allowed to determine the nton and ntoff and derive the RR, Ti and Ti/Ttot neural ventilatory parameters. The EMGdi amplitude provides a real-time indirect measure of the NRD, which reflects the load on the respiratory muscles. The NRD, assessed by normalized EMGdi signals, is higher in patients with respiratory disease than in healthy subjects. To evaluate the behavior of the fSamp En, as a method for improving the measurement of NRD from EMGdi signals in the presence of cardiac activity, compared to the average rectified value and root mean square value approaches, first, these methods have been applied to synthetic EMGdi signals . Secondly, we tested the proposed methods in an experimental study with EMGdi signals recorded in healthy subjects during an incremental inspiratory load test. The EMGdi amplitude allowed to evaluate changes in the respiratory muscle activation patterns and estimate the NRD. Also, this thesis contributes to the study of the respiratory activity by the non-invasive recording of mechanomyographic low frequency (BF) activity in healthy subjects and in patients with chronic obstructive pulmonary disease, allowing the study of bilateral asynchrony of the diaphragm and the RR. Finally, we have proposed the use of concentric ring electrodes as an alternative to improve the spatial resolution of electromyographic recordings, and eliminate the problems associated with the location and orientation of the bipolar configuration. The approaches presented in this doctoral thesis based on the analysis of electromyographic and mechanomyographic signals of respiratory museles allow to extract complementary information to current use techniques of and contribute to the study of respiratory function in the clinical setting . La contracción de los músculos respiratorios se produce en respuesta a la estimulación eléctrica. Estos estímulos se originan en las neuronas respiratorias del tronco del encéfalo, se transmiten a través de los nervios motores a las uniones neuromusculares y se propagan a lo largo de las fibras musculares. La electromiografía respiratoria mide la actividad eléctrica de los músculos respiratorios en respuesta a esta estimulación nerviosa. El impulso neural respiratorio (NRD) se expresa mejor a través del neurograma frénico, pero esto no es factible en los seres humanos. Como alternativa, la medida de la señal electromiográfica del diafragma (EMGdi) refleja de forma indirecta la actividad frénica. La señal EMGdi puede registrarse utilizando métodos invasivos, lo que implica el uso de electrodos de aguja o electrodos colocados en el esófago a nivel del diafragma . Como alternativa no invasiva, el estudio de la actividad muscular respiratoria puede abordarse mediante la electromiografía de superficie. El inicio y fin del tiempo neural inspiratorio (nton y ntoff, respectivamente) son medidas de importancia en los estudios de interacción paciente-ventilador, donde el nivel de la asistencia proporcionada por el ventilador es controlado por la demanda del paciente. Los artefactos cardíacos (ECG) a menudo hacen que sea difícil de utilizar la señal EMGdi. Para superar el inconveniente de la interferencia ECG, en la presente tesis se propone utilizar la entropía muestra! con valores de tolerancia fijos (fSampEn), una técnica que es robusta contra el ruido de tipo impulsivo. Para evaluar la estimación del nton y ntoff se ha realizado un estudio experimental con señales EMGdi superficie registrada en sujetos sanos durante dos protocolos respiratorios, diseñados para evaluar la influencia de los diferentes patrones respiratorios sobre la señal EMGdi. Estos protocolos consistieron en un aumento gradual de la frecuencia respiratoria (RR) con un tiempo inspiratorio (Ti) fracciona! constante (Ti!Ttot) y en una disminución gradual en el Ti!Ttot con una RR constante, respectivamente. Los algoritmos desarrollados han permitido determinar el nton y el ntoff y derivar los parámetros ventilatorios RR, Ti, y TifTtot neurales. La amplitud de la EMGdi proporciona una medida indirecta del NRD, que refleja la carga sobre los músculos respiratorios. El NRD, evaluado en señales EMGdi normalizadas, es mayor en pacientes con enfermedades respiratorias que en sujetos sanos. Para evaluar el comportamiento de la fSampEn, como un método para mejorar la medición del NRD a partir de señales EMGdi en presencia de ECG, en comparación con los enfoques basados en el uso del valor rectificado medio y valor cuadrático medio, primero, se han aplicado estos métodos a señales EMGdi sintéticas . En segundo lugar, hemos probado los métodos propuestos en un estudio experimental con señales EMGdi registradas en sujetos sanos durante una prueba de carga inspiratoria incremental. La amplitud de la EMGdi permitió evaluar los cambios en el patrón de activación de los músculos respiratorios y estimar el NRO. Asimismo, esta tesis doctoral contribuye al estudio de la actividad respiratoria mediante el registro no invasivo de actividad mecanomiográfica de baja frecuencia (BF) en sujetos sanos y en pacientes con enfermedad obstructiva crónica, permitiendo el estudio de la asincronía bilateral del diafragma y la RR. Finalmente, hemos propuesto el uso de electrodos de anillos concéntricos como una alternativa para mejorar la resolución espacial de los registros electromiográficos, y eliminar los problemas asociados a la localización y orientación de la configuración bipolar. Los enfoques presentados en esta tesis doctoral basados en el análisis de señales electromiográficas y mecanomiográficas de los músculos
Respiratory muscle contraction occurs in response to the electrical stimulation of the muscles. These electrical stimuli originate in the respiratory neurons of the brainstem, are transmitted via motor nerves to the neuromuscular junctions and propagate along muscle fibers. Respiratory electromyography measures the electrical activity of respiratory muscles in response to this nerve stimulation. The neural respiratory drive (NRD) is best expressed in a phrenic neurogram, but this is not feasible in humans. Alternatively, measurements of the diaphragm electromyographic signal (EMGdi) would most likely reflect phrenic neurogram activity. EMGdi signal can be recorded using invasive methods, involving the use of needle electrodes or electrodes positioned in the esophagus at the level of the diaphragm. As a non-invasive alternative, the study of respiratory muscle activity can be addressed by surface electromyography. The onset and offset of the neural inspiratory time (nton and ntoff, respectively) are fundamentally important measurements in studies of patient-ventilator interaction, where the level of assistance delivered by the ventilator is controlled by patient demand. Cardiac artifacts (ECG) often make it difficult to utilize EMGdi. To overcome the shortcoming of the ECG, in this thesis is proposed to use sample entropy with fixed tolerance values (fSampEn), a robust technique against impulsive noise. To evaluate nton and ntoff estimation it has been carried out an experimental study with surface EMGdi signals recorded in healthy subjects during two respiratory protocols designed to evaluate the influence of different breathing patterns on the EMGdi. These protocols consisted of a stepwise increase in respiratory rate (RR) with constant fractional inspiratory time (Ti/Ttot) and a stepwise decrement in the Ti/Ttot with constant RR, respectively. The developed algorithms allowed to determine the nton and ntoff and derive the RR, Ti and Ti/Ttot neural ventilatory parameters. The EMGdi amplitude provides a real-time indirect measure of the NRD, which reflects the load on the respiratory muscles. The NRD, assessed by normalized EMGdi signals, is higher in patients with respiratory disease than in healthy subjects. To evaluate the behavior of the fSamp En, as a method for improving the measurement of NRD from EMGdi signals in the presence of cardiac activity, compared to the average rectified value and root mean square value approaches, first, these methods have been applied to synthetic EMGdi signals . Secondly, we tested the proposed methods in an experimental study with EMGdi signals recorded in healthy subjects during an incremental inspiratory load test. The EMGdi amplitude allowed to evaluate changes in the respiratory muscle activation patterns and estimate the NRD. Also, this thesis contributes to the study of the respiratory activity by the non-invasive recording of mechanomyographic low frequency (BF) activity in healthy subjects and in patients with chronic obstructive pulmonary disease, allowing the study of bilateral asynchrony of the diaphragm and the RR. Finally, we have proposed the use of concentric ring electrodes as an alternative to improve the spatial resolution of electromyographic recordings, and eliminate the problems associated with the location and orientation of the bipolar configuration. The approaches presented in this doctoral thesis based on the analysis of electromyographic and mechanomyographic signals of respiratory museles allow to extract complementary information to current use techniques of and contribute to the study of respiratory function in the clinical setting . La contracción de los músculos respiratorios se produce en respuesta a la estimulación eléctrica. Estos estímulos se originan en las neuronas respiratorias del tronco del encéfalo, se transmiten a través de los nervios motores a las uniones neuromusculares y se propagan a lo largo de las fibras musculares. La electromiografía respiratoria mide la actividad eléctrica de los músculos respiratorios en respuesta a esta estimulación nerviosa. El impulso neural respiratorio (NRD) se expresa mejor a través del neurograma frénico, pero esto no es factible en los seres humanos. Como alternativa, la medida de la señal electromiográfica del diafragma (EMGdi) refleja de forma indirecta la actividad frénica. La señal EMGdi puede registrarse utilizando métodos invasivos, lo que implica el uso de electrodos de aguja o electrodos colocados en el esófago a nivel del diafragma . Como alternativa no invasiva, el estudio de la actividad muscular respiratoria puede abordarse mediante la electromiografía de superficie. El inicio y fin del tiempo neural inspiratorio (nton y ntoff, respectivamente) son medidas de importancia en los estudios de interacción paciente-ventilador, donde el nivel de la asistencia proporcionada por el ventilador es controlado por la demanda del paciente. Los artefactos cardíacos (ECG) a menudo hacen que sea difícil de utilizar la señal EMGdi. Para superar el inconveniente de la interferencia ECG, en la presente tesis se propone utilizar la entropía muestra! con valores de tolerancia fijos (fSampEn), una técnica que es robusta contra el ruido de tipo impulsivo. Para evaluar la estimación del nton y ntoff se ha realizado un estudio experimental con señales EMGdi superficie registrada en sujetos sanos durante dos protocolos respiratorios, diseñados para evaluar la influencia de los diferentes patrones respiratorios sobre la señal EMGdi. Estos protocolos consistieron en un aumento gradual de la frecuencia respiratoria (RR) con un tiempo inspiratorio (Ti) fracciona! constante (Ti!Ttot) y en una disminución gradual en el Ti!Ttot con una RR constante, respectivamente. Los algoritmos desarrollados han permitido determinar el nton y el ntoff y derivar los parámetros ventilatorios RR, Ti, y TifTtot neurales. La amplitud de la EMGdi proporciona una medida indirecta del NRD, que refleja la carga sobre los músculos respiratorios. El NRD, evaluado en señales EMGdi normalizadas, es mayor en pacientes con enfermedades respiratorias que en sujetos sanos. Para evaluar el comportamiento de la fSampEn, como un método para mejorar la medición del NRD a partir de señales EMGdi en presencia de ECG, en comparación con los enfoques basados en el uso del valor rectificado medio y valor cuadrático medio, primero, se han aplicado estos métodos a señales EMGdi sintéticas . En segundo lugar, hemos probado los métodos propuestos en un estudio experimental con señales EMGdi registradas en sujetos sanos durante una prueba de carga inspiratoria incremental. La amplitud de la EMGdi permitió evaluar los cambios en el patrón de activación de los músculos respiratorios y estimar el NRO. Asimismo, esta tesis doctoral contribuye al estudio de la actividad respiratoria mediante el registro no invasivo de actividad mecanomiográfica de baja frecuencia (BF) en sujetos sanos y en pacientes con enfermedad obstructiva crónica, permitiendo el estudio de la asincronía bilateral del diafragma y la RR. Finalmente, hemos propuesto el uso de electrodos de anillos concéntricos como una alternativa para mejorar la resolución espacial de los registros electromiográficos, y eliminar los problemas asociados a la localización y orientación de la configuración bipolar. Los enfoques presentados en esta tesis doctoral basados en el análisis de señales electromiográficas y mecanomiográficas de los músculos
The analysis of the electromyographic signal of the diaphragm muscle (EMGdi) can provide important information for evaluating the respiratory muscular function. The EMGdi can be recorded using surface Ag/AgCl disc electrodes in monopolar or bipolar configuration. However, these non-invasive EMGdi recordings are usually contaminated by the electrocardiographic (ECG) signal. EMGdi signal can also be noninvasively recorded using concentric ring electrodes in bipolar configuration (CRE) that estimate Laplacian surface potential. Laplacian recordings increase spatial resolution and attenuate distant bioelectric interferences, such as the ECG. Thus, the objective of this work is to compare and to evaluate CRE and traditional bipolar EMGdi recordings in a healthy subject during a dynamic inspiratory maneuver with incremental inspiratory loads. In the conducted study, it was calculated the cumulative percentage of power spectrum of EMGdi recordings to determine the signal bandwidth, and the power ratio between the EMGdi signal segments with and without cardiac activity. The results of this study suggest that EMGdi acquired with CRE electrodes is less affected by the ECG interference, achieves a wider bandwidth and a higher power ratio between segments without cardiac activity and with cardiac activity.
Diaphragm electromyography is a valuable technique for the recording of electrical activity of the diaphragm. The analysis of diaphragm electromyographic (EMGdi) signal amplitude is an alternative approach for the quantification of the neural respiratory drive (NRD). The EMGdi signal is, however, corrupted by electrocardiographic (ECG) activity, and this presence of cardiac activity can make the EMGdi interpretation more difficult. Traditionally, the EMGdi amplitude has been estimated using the average rectified value (ARV) and the root mean square (RMS). In this study, surface EMGdi signals were analyzed using the fixed sample entropy (fSampEn) algorithm, and compared to the traditional ARV and RMS methods. The fSampEn is calculated using a tolerance value fixed and independent of the standard deviation of the analysis window. Thus, this method quantifies the amplitude of the complex components of stochastic signals (such as EMGdi), and being less affected by changes in amplitude due to less complex components (such as ECG). The proposed method was tested in synthetic and recorded EMGdi signals. fSampEn was less sensitive to the effect of cardiac activity on EMGdi signals with different levels of NRD than ARV and RMS amplitude parameters. The mean and standard deviation of the Pearson's correlation values between inspiratory mouth pressure (an indirect measure of the respiratory muscle activity) and fSampEn, ARV, and RMS parameters, estimated in the recorded EMGdi signal at tidal volume (without inspiratory load), were 0.38±0.12, 0.27±0.11 , and 0.11±0.13, respectively. Whereas at 33 cmH2O (maximum inspiratory load) were 0.83±0.02, 0.76±0.07, and 0.61±0.19 , respectively. Our findings suggest that the proposed method may improve the evaluation of NRD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.