Abstract:A novel industrial-scale ultraviolet-C (UV-C) light processor from AseptoRay (MGT, Israel) was used to treat a raw cold-pressed green juice blend (GJB) consisting of kale, romaine, celery, apple, and lemon. The effect of UV-C light energies of 0.88 kJ L −1 and 2.93 kJ L −1 on microbial, enzymatic, nutritional, quality, and sensory parameters of the GJB was studied. Using 2.93 kJ L −1 , 3.7 log reduction in aciduric bacteria and 3.9 logs in aerobic colony count were achieved, while lactic acid bacteria, coliforms, yeasts, and moulds were reduced by >3, >2, 2.1, and 2.1 logs, respectively. A minor increase in polyphenoloxidase (PPO) enzyme activity was seen with 0.88 kJ L −1 and a slight change in colour (not visually observed) was detected using 2.93 kJ L −1 . No other significant change in nutritional and quality parameters or enzyme activities was detected. Further, the stability of the GJB was explored. Kale and romaine contributed the most significant source of spoilage enzyme activity, cloud loss, and browning in the GJB. These stability parameters were shown to be affected by pressing temperature and pH. The commercial UV-C treatment process explored in this study is a viable alternative to high pressure processing (HPP) for improved microbial safety of fresh green juice blends.