We explore various metal-oxide-semiconductor field-effect transistor (MOSFET)-embedded microcantilever designs to assess their performance as an efficient nanomechanoelectronic signal transduction platform for monitoring deflection in microcantilever-based phenomena such as biochemical sensing and actuation. The current-voltage characteristics of embedded MOSFETs show current noise in the nanoampere range with a large signal-to-noise ratio sufficient to provide measureable output signal. The change in drain current with cantilever deflection is consistent with the effect of stress on carrier mobility and drain current reported in previous studies, validating that the MOSFET cantilevers can directly transduce deflection of a microcantilever into reproducible change in electrical signal.