Inclusion complexes of carvedilol(CR) with hydroxyl propyl beta-cyclodextrin (HPBCD) was prepared using co-grinding technique. Then, the inclusion complex was microencapsulated using combinations of Eudragit NE30D (EU) and sodium alginate (SA) utilizing orifice gelation technique. The formulations were analysed by using Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Differential scanning Calorimetry (DSC) and X-ray diffractometer (XRD) and also evaluated for particle size, encapsulation efficiency, production yield, swelling capacity, mucoadhesive properties, zeta potential and drug release. The microcapsules were smooth and showed no visible cracks and extended drug release of 55.2006% up to 12 hours in phosphate buffer of pH 6.8, showing particle size within the range of 264.5-358.5 µm, and encapsulation efficiency of 99.337±0.0100-66.2753±0.0014%.The in vitro release data of optimized batch of microcapsules were plotted in various kinetic equations to understand the mechanisms and kinetics of drug release, which followed first order kinetics, value of "n" is calculated to be 0.459 and drug release was diffusion controlled. The mice were fed with diet for inducing high blood pressure and the in vivo antihypertensive activity of formulations was carried out administering the optimized formulations and pure drug separately by oral feeding and measured by B.P Monwin IITC Life Science instrument and the results indicated that the bioavailability of carvedilol was increased both in vitro and in vivo with the mucoadhesive polymers showing primary role in retarding the drug release.