2022
DOI: 10.3390/app12062826
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of Odor Prediction Model Performance and Variable Importance according to Various Missing Imputation Methods

Abstract: The aim of this study is to ascertain the most suitable model for predicting complex odors using odor substance data that has a small number of data and a large number of missing data. First, we compared the data removal and imputation methods, and the method of imputing missing data was found to be more effective. Then, in order to recommend a suitable model, we created a total of 126 models (missing imputation: single imputation, multiple imputations, K-nearest neighbor imputation; data preprocessing: standa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 35 publications
0
0
0
Order By: Relevance