The cytotoxic effects of Paraquat, an herbicide refractory to treatment after intentional or accidental contact, were investigated on the human leukemia HL-60 cells. With the establishment of Paraquat injury model of HL-60 cells, trypan blue exclusion assaying was performed to have determined the effects of Paraquat-induced cytotoxicity on HL-60 cells in a concentration- dependent manner. Upon treatment with various concentrations of Paraquat, pronounced increase on the levels of intracellular production of O2?- and H2O2 was detected with employment of fluorescent probes. Indicative of the oxidative stress, levels of MDA and T-AOC were quantitated to have determined the causal role for Paraquat in subjecting HL-60 cells to oxidative damage. Based on this finding, effects of antioxidant enzymes including GSH, NAC, CAT and SOD on attenuating the Paraquat-induced oxidative damage on HL-60 cells were examined, aiming to identify the most effective antioxidant enzyme for alleviating the cytotoxicity induced by Paraquat. In conjunction with the determination of cytotoxicity exerted by all the antioxidant enzymes on HL-60 cells, GSH-with its least inherent cytotoxicity on HL-60 cells-was identified as a promising candidate ingredient for extenuating the Paraquat-induced cytotoxicity