Background
Generative artificial intelligence tools and applications (GenAI) are being increasingly used in health care. Physicians, specialists, and other providers have started primarily using GenAI as an aid or tool to gather knowledge, provide information, train, or generate suggestive dialogue between physicians and patients or between physicians and patients’ families or friends. However, unless the use of GenAI is oriented to be helpful in clinical service encounters that can improve the accuracy of diagnosis, treatment, and patient outcomes, the expected potential will not be achieved. As adoption continues, it is essential to validate the effectiveness of the infusion of GenAI as an intelligent technology in service encounters to understand the gap in actual clinical service use of GenAI.
Objective
This study synthesizes preliminary evidence on how GenAI assists, guides, and automates clinical service rendering and encounters in health care The review scope was limited to articles published in peer-reviewed medical journals.
Methods
We screened and selected 0.38% (161/42,459) of articles published between January 1, 2020, and May 31, 2023, identified from PubMed. We followed the protocols outlined in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to select highly relevant studies with at least 1 element on clinical use, evaluation, and validation to provide evidence of GenAI use in clinical services. The articles were classified based on their relevance to clinical service functions or activities using the descriptive and analytical information presented in the articles.
Results
Of 161 articles, 141 (87.6%) reported using GenAI to assist services through knowledge access, collation, and filtering. GenAI was used for disease detection (19/161, 11.8%), diagnosis (14/161, 8.7%), and screening processes (12/161, 7.5%) in the areas of radiology (17/161, 10.6%), cardiology (12/161, 7.5%), gastrointestinal medicine (4/161, 2.5%), and diabetes (6/161, 3.7%). The literature synthesis in this study suggests that GenAI is mainly used for diagnostic processes, improvement of diagnosis accuracy, and screening and diagnostic purposes using knowledge access. Although this solves the problem of knowledge access and may improve diagnostic accuracy, it is oriented toward higher value creation in health care.
Conclusions
GenAI informs rather than assisting or automating clinical service functions in health care. There is potential in clinical service, but it has yet to be actualized for GenAI. More clinical service–level evidence that GenAI is used to streamline some functions or provides more automated help than only information retrieval is needed. To transform health care as purported, more studies related to GenAI applications must automate and guide human-performed services and keep up with the optimism that forward-thinking health care organizations will take advantage of GenAI.