Carbapenem was originally regarded as a cornerstone therapeutic for Gram-negative bacterial infections that could be fatal, but these pathogens are rapidly acquiring resistance to it by various methods such as forming biofilms, mutations in porin channels, overexpression of efflux pumps, altering or modifying antibiotics, and by horizontal gene transfer of resistance biomarkers. Among Gram-negative pathogens, the World Health Organization has prioritized Acinetobacter baumannii as a “pathogen of concern.” A. baumannii strains have a variety of antibiotics resistance pathways, making them resistant to the majority of antibiotics. Antibiotics are used indiscriminately and excessively, causing extensive natural selection pressure and allowing just the most versatile variants of A. baumannii to flourish. Evolutionary changes are unavoidable, but the widespread utilization of antimicrobials in communities, hospitals, and agriculture industries is certainly contributing to the outbreak. Antibiotic resistance has resulted in a number of adverse outcomes such as inadequacy of antimicrobials, persistent infections, and physical ailments that cause the patients to lose momentum, longer stay in the hospital, increased mortality, and morbidity, as well as increased cost that can overburden the patients and even the hospitals. Therefore, optimizing efficient alternate natural antibacterial compounds is a critical aspect of addressing the problem of antibiotic resistance. Various studies (in vitro) done by scientists and researchers have illustrated the efficacy of plant extracts and their essential oils against A. baumannii and other pathogens. The most urgent need is to do research in vivo and more screening of natural products or plant parts, which might lead to the discovery of novel therapeutically efficient antibacterial agents against resistant bacterial infections.