Organic heirloom tomato production is limited in the southeastern United States by foliar and soilborne diseases, thermal stress, and weathered soil structure. Heirloom cultivars command a premium market, but tolerance to disease and abiotic stress is often poor. Organic growers need research that supports the advantages of market niches afforded by heirloom tomatoes through the development of integrated systems to manage pests and reduce risks of associated crop losses or low yields. Two major soilborne diseases common in the southeast, bacterial wilt (caused by Ralstonia solanacearum) and fusarium wilt (caused by Fusarium oxysporum f.sp. lycopersici), were effectively managed using susceptible heirloom scions grafted onto resistant rootstock. In naturally infested soil, bacterial wilt incidence for nongrafted ‘German Johnson’ was 79% and 75% in 2005 and 2006, respectively. ‘German Johnson’ showed no symptoms of bacterial wilt in either year when grafted onto the resistant genotypes CRA 66 or Hawaii 7996. Fusarium wilt incidence was 46% and 50%, respectively, in nongrafted and self-grafted ‘German Johnson’ controls. When ‘Maxifort’ rootstock was grafted with ‘German Johnson’, no symptoms of fusarium wilt were seen, and plants with ‘Robusta’ rootstock had an intermediate level of disease (29%). An evaluation of commercially available rootstock was carried out in three separate experiments in diverse organic production systems to determine yield impacts with low disease pressure. ‘Maxifort’ rootstock significantly increased yield in one location (P = 0.05), but ‘Maxifort’ and ‘Robusta’ rootstock did not consistently impact yield at the other two locations. Grafting is an effective management tool for organic growers in the southeast United States to reduce risk of crop loss resulting from soilborne diseases and will be a valuable component in an integrated pest management program.