The sea level trend in the equatorial Malacca Strait is a significant issue that needs to be reviewed since it is an area of interest. Assessing its future impact on estuarine tidal characteristics is worth studying because it relates to the potency of coastal damages. This study aimed to discuss the relationship between sea level variations and anomalies and their possible triggering factors and to estimate the future impacts on the tidal properties in the estuarine zone. Tide gauge and altimetry data in the Tanjong Pagar site were used to assess the sea level trends over 27 years of observation (from 1992 to 2019). Both altimetry and tide gauge data showed an upward trend, with 0.24 cm/year and 0.39 cm/year, respectively. Due to the near-equatorial area of interest, sea level variability is more synchronized with ENSO rather than IOD. At some points, ENSO shapes the sea level fluctuation, with an R2 of less than 10%. For specific periods, the coupling effects between MJO and La Niña may trigger higher evaporation in the maritime continent, triggering increasing sea levels. Of particular concern, among the other assessed factors, the zonal currents and winds (wind-driven currents) are strongly correlated with sea level variations, primarily during the NE monsoon and the second transitional periods, with a determination coefficient of about 18–36%. As a result of sea level rises, it is estimated that tidal constituent amplitudes will increase by about 8.9% and 18.3% in 2050 and 2100, respectively. The increase in tidal range will possibly relate to the tidal bore passage in the Kampar estuary. Therefore, more advanced hydrodynamic modeling is necessary to determine the impact of sea level rises on tidal bore generation.