Current tests for plane stress characterization of fracture in automotive sheet metals include simple shear, uniaxial, plane strain, and biaxial tension, but there is a significant gap between shear and uniaxial tension. Presently, it remains uncertain whether the fracture strain experiences a reduction between simple shear and uniaxial tension or undergoes an exponential increase as the triaxiality decreases. Fracture in combined simple shear and tension is complicated by premature edge cracking in tension along with a strong sensitivity of fracture strain to the measurement lengthscale. To address these issues, several existing simple shear geometries were modified and evaluated, with a focus on obtaining approximately linear strain paths corresponding to combined uniaxial tension and simple shear suitable for experimental fracture characterization using digital image correlation (DIC). An experimental and numerical investigation was conducted using two planar geometries that do not require through-thickness machining and can be easily tested on a universal test frame. Finite-element analysis was used to investigate the influence of the notch eccentricity on the stress state and predicted fracture location. The most promising geometry in each coupon type was then selected and tested for a dual-phase advanced high-strength steel, DP1180. The performance of the two planar geometries was evaluated based on the linearity of strain and stress state, along with the location of fracture initiation. The best geometry was then used to evaluate and recalibrate the modified Mohr-Coulomb (MMC) fracture locus with data in combined shear and tension. The initial MMC calibration using four fracture tests that suppressed necking provided an accurate estimate for the fracture strain in combined uniaxial tension and simple shear. The MMC model correctly predicted a valley in the fracture strain between these two loading conditions.