Increasing demand of alternative energy sources leads to the development of new electrocatalytic materials for fuel cells. In present work, we report the synthesis of rGO/PEDOT : PSS (reduced graphene oxide/ Poly (3,4‐ethylenedioxythiophene) : Polystyrene sulfonate) nanocomposite by in‐situ polymerization method using EDOT as precursor and the nanocomposite is used as anode catalyst for methanol oxidation. Structural and chemical characterizations such as XRD, FTIR and Micro‐Raman confirm the formation of the nanocomposite. From TEM image, growth of nanofibrous PEDOT : PSS on rGO nanosheets is observed. Electrochemical characterizations of rGO/PEDOT : PSS/ITO electrode are performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Chronoamperometry (CA) measurements. Methanol oxidation reactions are performed in 0.5 M NaOH solution. The anodic current of the nanocomposite coated ITO is found be 37.5 mA at 0.59 V due to methanol electro‐oxidation and retentivity of the electrode is 92 % of initial scan after 800 cycles. The chronoamperometric results reveal that the nanocomposite modified electrode exhibits better stability with retention factor of 42.4 % up to 3000 seconds. The rGO/PEDOT : PSS/ITO electrode exhibits enhanced electrocatalytic activity towards methanol oxidation reaction due to larger surface area and excellent conductivity of rGO nanosheet.