This study focuses on a small agricultural diesel engine fueled with B20 (20% biodiesel and 80% diesel by volume) blend fuel in a plateau area. The combustion chamber’s structural parameters and fuel injection angle were taken as variables at peak torque conditions. First, a full factorial design was used for experimental design. Second, the back-propagation (BP) neural network was employed to predict the indicated thermal efficiency and the indicated specific NOx emission. Third, the non-dominated sorting genetic algorithm-II (NSGA-II) was utilized to optimize the indicated thermal efficiency and the indicated specific NOx emission. Finally, the technique for order of preference by similarity to ideal solution (TOPSIS) method was applied to obtain optimal solutions, and a three-dimensional numerical simulation was conducted to verify the optimization results. The optimization results indicate that the shape characteristics of the combustion chamber have a certain influence on the engine’s performance. The optimized design significantly reduces NOx emissions, by 22.83%, compared to the original engine, whilst maintaining the engine’s performance.