Abstract. Stratospheric ozone affects climate directly as the
predominant heat source in the stratosphere and indirectly through chemical
reactions controlling other greenhouse gases. The U.S. Department of
Energy's Energy Exascale Earth System Model version 1 (E3SMv1) implemented a
new ozone chemistry module that improves the simulation of the sharp
tropopause gradients, replacing a version based partly on long-term average
climatologies that poorly represented heating rates in the lowermost
stratosphere. The new O3v2 module extends seamlessly into the troposphere
and preserves the naturally sharp cross-tropopause gradient, with 20 %–40 %
less ozone in this region. Additionally, O3v2 enables the diagnosis of
stratosphere–troposphere exchange flux of ozone, a key budget term lacking
in E3SMv1. Here, we evaluate key features in ozone abundance and other
closely related quantities in atmosphere-only E3SMv1 simulations driven by
observed sea surface temperatures (SSTs, years 1990–2014), comparing them with
satellite observations of ozone and also with the University of California,
Irvine chemistry transport model (UCI CTM) using the same stratospheric
chemistry scheme but driven by European Centre forecast fields for the same
period. In terms of stratospheric column ozone, O3v2 shows reduced mean bias
and improved northern midlatitude variability, but it is not quite as good as the
UCI CTM. As expected, SST-forced E3SMv1 simulations cannot synchronize with
observed quasi-biennial oscillations (QBOs), but they do show the typical
QBO pattern seen in column ozone. This new O3v2 E3SMv1 model mostly retains
the same climate state and climate sensitivity as the previous version, and
we recommend its use for other climate models that still use ozone
climatologies.