Objectives: The aim of the study was to assess the benefits of a predictive low glucose suspend (PLGS) system in real-life in children and adolescents with type 1 diabetes of different age and age-related clinical challenges.Methods: Real life retrospective and descriptive analysis included 44 children (26 girls) with type 1 diabetes who were introduced to PLGS system. We divided them in three age groups: I (3-6 years old, n = 12), II (7-10 y/o, n = 16), III (11-19 y/o, n = 16). All children and their caregivers received unified training in self-management during PLGS therapy. Patients' data included: age, HbA1C levels, sex. While from the CGM metric, we obtained: time of sensor use (SENSuse), time in range (TiR): in, below and over target range and average blood glycemia (AVG), insulin suspension time (INSsusp).Results: SENSuse was 93% in total, with 92%, 94%, and 87% in age groups I, II, III, respectively. In total the reduction of mean HbA1C from 7.61% to 6.88% (P < .05), while for the I, II, and III it was 7.46% to 6.72%, 6.91% to 6.41%, and 8.46 to 7.44%, respectively (P < .05). Although we observed a significant reduction of HbA1C, the time below target range was minimal. Specific findings included: group I-longest INSsusp (17%), group II-lowest glycemic variability (CV) (36%), and group III-highest AVG (169 mg/dL). There was a reverse correlation between suspend before low and age (−0.32, P < .05). In group I CV reduced TiR in target range (TiRin) (−0.82, P < .05), in group II use of complex boluses increased TiRin (0.52, P < .05). In group III higher CV increased HbA1C (0.64, P < .05) while reducing TiRin (−0.72, P < .05).Conclusions: PLGS is a suitable and safe therapeutic option for children with diabetes of all age and it is effective in addressing age-specific challenges. PLGS improves glycemic control in children of all age, positively affecting its different parameters.
K E Y W O R D Sdiabetes, insulin pumps, technology