Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Microinfusions are commonly used for the administration of catecholamines, but start-up delays pose a problem for reliable and timely drug delivery. Recent findings show that venting of the syringe infusion pump with draining of fluid to ambient pressure before directing the flow towards the central venous catheter does not counteract start-up delays. With the aim to reduce start-up delays, this study compared fluid delivery during start-up of syringe infusion pumps without venting, with ambient pressure venting, and with central venous pressure (CVP)-adjusted venting. Start-up fluid delivery from syringe pumps using a microinfusion of 1 mL/h was assessed by means of liquid flow measurement at 10, 60, 180 and 360 s after opening the stopcock and starting the pump. Assessments were performed using no venting, ambient pressure venting or CVP-adjusted venting, with the pump placed either at zero, − 43 cm or + 43 cm level and exposed to a simulated CVP of 10 mmHg. Measured fluid delivery was closest to the calculated fluid delivery for CVP-adjusted venting (87% to 100% at the different timepoints). The largest deviations were found for ambient pressure venting (− 1151% to + 82%). At 360 s after start-up 72% to 92% of expected fluid volumes were delivered without venting, 46% to 82% with ambient pressure venting and 96% to 99% with CVP-adjusted venting. CVP-adjusted venting demonstrated consistent results across vertical pump placements (p = 0.485), whereas the other methods had significant variances (p < 0.001 for both). In conclusion, CVP-adjusted venting effectively eliminates imprecise drug delivery and start-up delays when using microinfusions.
Microinfusions are commonly used for the administration of catecholamines, but start-up delays pose a problem for reliable and timely drug delivery. Recent findings show that venting of the syringe infusion pump with draining of fluid to ambient pressure before directing the flow towards the central venous catheter does not counteract start-up delays. With the aim to reduce start-up delays, this study compared fluid delivery during start-up of syringe infusion pumps without venting, with ambient pressure venting, and with central venous pressure (CVP)-adjusted venting. Start-up fluid delivery from syringe pumps using a microinfusion of 1 mL/h was assessed by means of liquid flow measurement at 10, 60, 180 and 360 s after opening the stopcock and starting the pump. Assessments were performed using no venting, ambient pressure venting or CVP-adjusted venting, with the pump placed either at zero, − 43 cm or + 43 cm level and exposed to a simulated CVP of 10 mmHg. Measured fluid delivery was closest to the calculated fluid delivery for CVP-adjusted venting (87% to 100% at the different timepoints). The largest deviations were found for ambient pressure venting (− 1151% to + 82%). At 360 s after start-up 72% to 92% of expected fluid volumes were delivered without venting, 46% to 82% with ambient pressure venting and 96% to 99% with CVP-adjusted venting. CVP-adjusted venting demonstrated consistent results across vertical pump placements (p = 0.485), whereas the other methods had significant variances (p < 0.001 for both). In conclusion, CVP-adjusted venting effectively eliminates imprecise drug delivery and start-up delays when using microinfusions.
The purpose of this in vitro study was to evaluate the impact of the vertical level of the stopcock connecting the infusion line to the central venous catheter on start-up fluid delivery in microinfusions. Start-up fluid delivery was measured under standardized conditions with the syringe outlet and liquid flow sensors positioned at heart level (0 cm) and exposed to a simulated CVP of 10 mmHg at a set flow rate of 1 ml/h. Flow and intraluminal pressures were measured with the infusion line connected to the stopcock primarily placed at vertical levels of 0 cm, + 30 cm and − 30 cm or primarily placed at 0 cm and secondarily, after connecting the infusion line, displaced to + 30 cm and − 30 cm. Start-up fluid delivery 10 s after opening the stopcock placed at zero level and after opening the stopcock primarily connected at zero level and secondary displaced to vertical levels of + 30 cm and – 30 cm were similar (− 10.52 [− 13.85 to − 7.19] µL; − 8.84 [− 12.34 to − 5.33] µL and − 11.19 [− 13.71 to − 8.67] µL (p = 0.469)). Fluid delivered at 360 s related to 65% (zero level), 71% (+ 30 cm) and 67% (− 30 cm) of calculated infusion volume (p = 0.395). Start-up fluid delivery with the stopcock primarily placed at + 30 cm and − 30 cm resulted in large anterograde and retrograde fluid volumes of 34.39 [33.43 to 35.34] µL and − 24.90 [− 27.79 to − 22.01] µL at 10 s, respectively (p < 0.0001). Fluid delivered with the stopcock primarily placed at + 30 cm and − 30 cm resulted in 140% and 35% of calculated volume at 360 s, respectively (p < 0.0001). Syringe infusion pumps should ideally be connected to the stopcock positioned at heart level in order to minimize the amounts of anterograde and retrograde fluid volumes after opening of the stopcock.
BackgroundConnecting an infusion line to a closed stopcock results in pressurization of fluid within the syringe infusion pump assembly leading to flow irregularities when opening the stopcock and activating the pump.AimsIt was the purpose of this study to assess the extent of pressurization under different conditions and its impact on start‐up fluid delivery.MethodsIntraluminal pressures and start‐up fluid delivery at 1 mL/h flow rate were assessed with connection of the infusion line 1 min (delayed connection) or immediately after purging (immediate connection) using two different infusion lines made from polyvinylchloride (PVC) or polyethylene (PE).ResultsDelayed connection resulted in an increase of intraluminal pressures from zero to 5.1 [4.5 to 5.7] mmHg with the PVC line and from zero to 47.1 [44.8 to 49.3] mmHg with the PE line (mean difference 42.0 [95% CI 39.3–44.7] mmHg; p < .0001). Immediate connection resulted in an increase of intraluminal pressures from zero to 44.3 [41.8–46.8] mmHg with the PVC line and from zero to 61.3 [57.2–65.4] mmHg with the PE line (mean difference 17.0 [95% CI 11.8–22.2] mmHg; p < .0001). The increase in intraluminal pressures was significantly higher with PE lines for both delayed and immediate connection when compared to the PVC lines (mean difference 29.5 [95% CI 19.3–39.7] mmHg; p < .0001). Related fluid volumes delivered at 10 s and 360 s after starting the pump ranged from −252% to 1321% (10 s) of expected infusion volumes and from 59% to 129% (360 s), respectively.ConclusionsBoth, timing of infusion line connection after purging and infusion line characteristics considerably affect intraluminal pressures and start‐up fluid delivery when connecting a new syringe infusion pump assembly to a closed stopcock. Consecutive alterations in drug administration can have considerable hemodynamic consequences when dealing with catecholamine infusions in critically ill patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.