2018
DOI: 10.3390/met8121044
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation Study on Iterative Inverse Modeling Procedure for Determining Post-Necking Hardening Behavior of Sheet Metal at Elevated Temperature

Abstract: The identification of the post-necking strain hardening behavior of metal sheet is important for finite element analysis procedures of sheet metal forming process. The inverse modeling method is a practical way to determine the hardening curve to large strains. This study is thus focused on the evaluation of the inverse modeling method using a novel material performance test. In this article, hot uniaxial tensile test of a commercially pure titanium sheet with rectangular section was first conducted. Utilizing… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
13
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 12 publications
(13 citation statements)
references
References 33 publications
0
13
0
Order By: Relevance
“…More specifically, the broad category of static overload includes more generic subjects also from the field of manufacturing-related topics, where the effect of deformation and fracture was studied as an important and undetached ingredient of the fabrication process per se (e.g., hot and cold working, machining). Therefore, the mostly "intense area" (Overload/Static) comprises studies concerning general deformation and fracture phenomena, as the result of instant loading/testing conditions [4,9,10,14,15,19] and studies related to manufacturing and production processes [6,7,12,13,16,20,22,25,26]. Testing and modeling procedures addressing the evolution of deformation and fracture during forming [7,13,26], the impact toughness, [4] and certain production process characteristics [25] are also included.…”
Section: Contributionsmentioning
confidence: 99%
See 2 more Smart Citations
“…More specifically, the broad category of static overload includes more generic subjects also from the field of manufacturing-related topics, where the effect of deformation and fracture was studied as an important and undetached ingredient of the fabrication process per se (e.g., hot and cold working, machining). Therefore, the mostly "intense area" (Overload/Static) comprises studies concerning general deformation and fracture phenomena, as the result of instant loading/testing conditions [4,9,10,14,15,19] and studies related to manufacturing and production processes [6,7,12,13,16,20,22,25,26]. Testing and modeling procedures addressing the evolution of deformation and fracture during forming [7,13,26], the impact toughness, [4] and certain production process characteristics [25] are also included.…”
Section: Contributionsmentioning
confidence: 99%
“…Therefore, the mostly "intense area" (Overload/Static) comprises studies concerning general deformation and fracture phenomena, as the result of instant loading/testing conditions [4,9,10,14,15,19] and studies related to manufacturing and production processes [6,7,12,13,16,20,22,25,26]. Testing and modeling procedures addressing the evolution of deformation and fracture during forming [7,13,26], the impact toughness, [4] and certain production process characteristics [25] are also included. Nevertheless, shear fracture processes that emerged in machining and chip formation are also part of this broader group of studies, relevant to manufacturing topics (see [12,16,20]).…”
Section: Contributionsmentioning
confidence: 99%
See 1 more Smart Citation
“…Combined (experimental, analytical, numerical model, etc.) [3,[6][7][8][12][13][14][15][16][18][19][20]22,25,26] As can be readily observed, the experimental and empirical approach is the dominant methodology of failure investigation. In addition, the emergence of numerical simulation, using finite element modeling (FEM), tends to be very popular in the prediction of material behavior and potential failure prevention.…”
Section: Contributionsmentioning
confidence: 99%
“…In contrast to the conventional sheet hot stamping process, fluid pressure provides the through-thickness normal stress and assists the sheet formation process during warm/hot sheet hydroforming [12,13]. Therefore, the stress states under the influence of fluid pressure are of great significance for elucidating the forming mechanism of this technique [14][15][16][17] and also play an important role in selection of processing method, parameter optimization, and determination of the rules governing deformation during forming [18,19]. Consequently, it is necessary to analyze how the fluid pressure acts on the sheet during the forming process [20,21].…”
Section: Introductionmentioning
confidence: 99%