In recent years, due to the occurrence of water shortage and drought problems, particularly in arid and semi-arid regions of the world, new methods to reduce evaporation from the surface of dam reservoirs, lakes, and other water-free surfaces are investigated. This study aimed to use hydrophobic bentonite to reduce water evaporation from water surfaces, on a laboratory scale, and field conditions for the first time. Bentonite initially became hydrophobic by stearic acid (SA). Under such conditions, hydrophobic bentonite floats on the surface of water and forms a thin coating layer. The produced hydrophobic bentonite had a contact angle of 150°, indicating its superhydrophobicity. Evaporation reduction was measured under laboratory and field conditions and it was compared to hexadecanol as the reference material. The results demonstrated that the hydrophobic bentonite efficiency under laboratory conditions was similar to that of hexadecanol and prevented water evaporation by 36%. However, under field conditions, hydrophobic bentonite and hexadecanol efficiencies were 40% and 23% to reduce evaporation for 30 days, respectively. In terms of stability, hexadecanol needed to be re-injected after three days, while hydrophobic bentonite was stable and remained on the surface for more than 100 days under laboratory conditions and for more than 15 days under field conditions without needing re-injection. This coverage with method can be used to reduce evaporation from lakes, tanks, and reservoirs of small dams.