The biological membranes are important in cell function but, during development of diseases such as diabetes, they are impaired. Consequently, membrane-associated biological processes are impaired as well. The mitochondria are important organelles where oxidative phosphorylation takes place, a process closely related with the membranes. In general, it is accepted that the development process of diabetes decreases membrane fluidity. However, in some cases, it has been found to increase membrane fluidity of mitochondria but to decrease the Respiratory Control (RC) index. In this study we found an increase of membrane fluidity and an increase of the RC at an early phase of the development of a type 2 diabetes model. We measured the lipoperoxidation, analyzed the fatty acids composition by gas chromatography, and assessed membrane fluidity using three fluorescent monitors located at different depths inside the bilayer, dipyrenilpropane (DPyP), diphenylhexatriene (DPH), and trimethylammonium diphenylhexatriene (TMA-DPH). Our findings indicate that in the initial stage of diabetes development, when lipoperoxidation still is not significant, the membrane fluidity of liver mitochondria increases because of the increment in the unsaturated to saturated fatty acids ratio (U/S), thus producing an increase of the RC. The membrane fluidity is not the same at all depths in the bilayer. Contrary to the results obtained in mitochondria, the diabetes induced a decrease in the U/S fatty acids ratio of liver total lipids, indicating that the mitochondria might have an independent mechanism for regulating its fatty acids composition.