Many boreal tree stands are neither clearly even-aged nor clearly uneven-aged. The stands may undergo a series of stages, during which an even-aged stand is transformed into two-storied mixed stand, and finally to multistoried or uneven-aged stand structure. The species composition often changes during the succession of stand stages. This study developed models for stand dynamics that can be used in different stand structures and species compositions. The model set consists of species-specific individual-tree diameter increment and survival models, and models for ingrowth. Separate models were developed for Scots pine, Norway spruce, and hardwood species. The models were used in a growth simulator, to give illustrative examples on species influences and stand dynamics. Methods to simulate residual variation around diameter increment and ingrowth models are also presented. The results suggest that mixed stands are more productive than one-species stands. Spruce in particular benefits from an admixture of other species. Mixed species improve diameter increment, decrease mortality, and increase ingrowth. Pine is a more beneficial admixture than birch. Simulations showed that uneven-aged management of spruce forests is sustainable and productive, and even-aged conifer stands growing on medium sites can be converted into uneven-aged mixed stands by a series of strong high thinnings.