Functional errors in analog portion of mixed signal circuits become more severe and improvements in verification methods are increasingly important. Current verification methods fall into two categories, simulation-based verification and formal verification [1], focusing on verifying analog circuit function/performance. This paper proposes a novel approach verifying analog circuit design using causal reasoning. Causal reasoning is the inductive reasoning process to create a new design. The flow begins with mining the causal reasoning steps (design plan) that produced the circuit, including starting ideas, design step sequence, and their justifications [2]. Then, topological features corresponding to the starting ideas and design step sequence are verified individually by replacing the related devices with ideal behavior model. Performance is evaluated through Cadence Spectre simulation. Comparison with new circuit performance reveals incorrect functional issues and/or performance potentials for improvement. They are negative causes of certain starting ideas or design steps, which might have been omitted during the design process. The paper discusses three operational amplifier designs realized in 0.2-µm CMOS technology to illustrate the verification approach.