This paper investigates adaptive event-triggered [Formula: see text] control for network-based master-slave switched systems subject to actuator saturation and data injection attacks. It is an important and unrecognised issue that the switching signal is affected from both event-triggering scheme and network attacks. An adaptive event-triggering scheme is proposed that can adjust the triggering frequency through a variable threshold based on system performance. Furthermore, considering the impacts of transmission delays and actuator saturation, an event-triggered time-delay error switched system is developed. Subsequently, by utilizing piecewise Lyapunov functional technique, sufficient conditions are derived to render the time-delay error switched system to have an [Formula: see text] performance level. In particular, the coupling between switching instants and data updating instants is analyzed during the system performance analysis. Moreover, sufficient conditions for the desired state-feedback controller gains and event-triggering parameter are presented. Finally, a numerical example is given to verify the effectiveness of the proposed method.